Evolution of a Controller with a Free Variable Using Genetic Programming
نویسندگان
چکیده
A mathematical formula containing one or more free variables is "general" in the sense that it provides a solution to an entire category of problems. For example, the familiar formula for solving a quadratic equation contains free variables representing the equation's coefficients. Previous work has demonstrated that genetic programming can automatically synthesize the design for a controller consisting of a topological arrangement of signal processing blocks (such as integrators, differentiators, leads, lags, gains, adders, inverters, and multipliers), where each block is further specified ("tuned") by a numerical component value, and where the evolved controller satisfies user-specified requirements. The question arises as to whether it is possible to use genetic programming to automatically create a "generalized" controller for an entire category of such controller design problems instead of a single instance of the problem. This paper shows, for an illustrative problem, how genetic programming can be used to create the design for both the topology and tuning of controller, where the controller contains a free variable.
منابع مشابه
A Method for Solving Optimal Control Problems Using Genetic Programming
This paper deals with a novel method for solving optimal control problems based on genetic programming. This approach produces some trial solutions and seeks the best of them. If the solution cannot be expressed in a closed analytical form then our method produces an approximation with a controlled level of accuracy. Using numerical examples, we will demonstrate how to use the results.
متن کاملControl of nonlinear systems using a hybrid APSO-BFO algorithm: An optimum design of PID controller
This paper proposes a novel hybrid algorithm namely APSO-BFO which combines merits of Bacterial Foraging Optimization (BFO) algorithm and Adaptive Particle Swarm Optimization (APSO) algorithm to determine the optimal PID parameters for control of nonlinear systems. To balance between exploration and exploitation, the proposed hybrid algorithm accomplishes global search over the whole search spa...
متن کاملDesign of PID Controller for Teleopration System with Genetic Algorithm
This paper presents a novel teleoperation controller for a nonlinear master–slave robotic system with constant time delay in communication channel. The proposed controller enables the teleoperation system to compensate human and environmental disturbances, while achieving master and slave position coordination in both free motion and contact situation. The current work basically extends the pas...
متن کاملA Genetic Programming-based Scheme for Solving Fuzzy Differential Equations
This paper deals with a new approach for solving fuzzy differential equations based on genetic programming. This method produces some trial solutions and seeks the best of them. If the solution cannot be expressed in a closed analytical form then our method produces an approximation with a controlled level of accuracy. Furthermore, the numerical results reveal the potential of the proposed appr...
متن کاملEvolution of Robot Controller Using Cartesian Genetic Programming
Cartesian Genetic Programming is a graph based representation that has many benefits over traditional tree based methods, including bloat free evolution and faster evolution through neutral search. Here, an integer based version of the representation is applied to a traditional problem in the field: evolving an obstacle avoiding robot controller. The technique is used to rapidly evolve controll...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000